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ABSTRACT

iii

The effects of a rigid polyurethane foam used as a confinement material on four 

types of breaching explosives were tested, focusing on the changes in shockwave peak 

pressures, detonation load compression forces, and brisance cratering abilities. The Plate 

Dent testing procedure was modified to incorporate a load cell force sensor, and two air 

overpressure sensors were included adjacent to the blast to quantify each test result. The 

testing variables focused on the polyurethane foam cure times and thickness volumes 

around the breaching explosives to determine the breaching charges' optimal energy output 

capabilities when confined by the foam material. The rigid foam confinement increased the 

compression forces and brisance cratering abilities of all four tested explosives types as the 

foam cure times were extended and foam confinement radius increased. A reduction in the 

positive peak blast pressure was noted as the foam confinement material was increased. An 

increase in the peak blast pressure and compression force occurred when the polyurethane 

foam cure times were extended. When confined by the polyurethane foam, the average 

compression force was increased by 483% and the average Plate Dent depths were 

increased by 26.4%. The average blast peak pressure of a polyurethane foam confined 

detonation was 10% less than an unconfined detonation. This study's findings show how a 

breaching charge confined by polyurethane foam would provide a more damaging blast 

force to a structure while reducing the blast exposure to the breaching team performing the 

explosive breach.
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1. INTRODUCTION

1.1. BACKGROUND

As conflicts between nations have continued to arise, the constant fighting among 

humanity has historically escalated to the war raging around the planet; thus, the 

improvement to wartime tactics has been ever evolving. The increase in population and the 

expanding urbanized development of countries have led to the transformation from rural- 

focused battles to guerilla-style fighting within urban environments. The progression in 

warfare tactics has modernized troops into developing and executing new interdiction 

tactics for enemy combatants embedded into urban populaces. The new guerilla wartime 

tactics often require troops to enter urban structures to hunt their enemies and generate 

breaching tactics (Marques, 2014).

Breaching of a structure is required when the breaching team needs access but 

cannot gain access without force. The technique of using an explosive to breach the 

building was historically the last resort because of the higher risks associated with handling 

and detonating the energetic material. Explosive breaching has been primarily used in 

urban environments, often with the uncertainty about what threats were waiting on the 

other side of the door. An explosive breach allows for a rapid entry into the structure and 

temporarily stuns the enemy combatants possibly waiting on the other side.

The explosives chosen for explosive breaching have traditionally been highly 

destructive yet lightweight for the breacher's carrying comfort. Breaching explosives and 

tactics have undergone alterations limiting shockwaves to ensure safety for the breaching 

team members in the proximity when explosives are detonated. A high-pressure shockwave
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can result in traumatic brain injuries (TBI) or other possible health concerns (Kamimori, 

2017) for a breaching team member.

This research aimed to evaluate the use of polyurethane spray foam as a confining 

material for high explosives charges by assessing the compression forces, shockwave peak 

pressures, and brisance cratering abilities for four types of high explosives that could be 

used for explosive breaching. The study focused on evaluating the explosive abilities when 

confined by polyurethane foam and compared the results to baseline charges with no foam. 

This research was designed to determine the explosive’s performance changes when 

confined by rigid foam material to identify possible improvements to existing explosive 

breaching techniques. The experiment's testing was done in three rounds of testing. The 

first round of testing focused on analyzing the variables of confinement versus 

nonconfinement and the effects of extended foam cure time of four standard types of 

breaching explosives (C-4, DetaSheet, KineStik, and TexPak). The second round of testing 

studied the effects of variable foam thicknesses using smaller C-4 charges.

The testing for this research was designed to identify high explosives' critical 

parameters crucial for effective explosive breaching. The parameters of the explosives 

chosen were shockwave pressure, impulse, impact force, and brisance. These parameters 

were chosen to measure the different forces that would be applied when an explosive was 

detonated. The impact force and brisance would concentrate on evaluating the applied 

forces to the structure. The shockwave pressure and impulse would focus on the forces 

applied to the surrounding blast site that a breaching team would have to endure. Each 

explosive parameter required neccassary testing to establish a baseline measurement for 

each of the four breaching charge products selected. The baseline tests used explosives
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detonated in an unconfined state and were the standard to compare the confining foam's 

variable effects.

1.2. LITERATURE REVIEW

The literature review for this study was set on determining previous research focused on 

the effects of high explosives confined by rigid polyurethane foam material. This literature 

review also was designed as an encompassing introduction of all the variant background 

understanding that led up to this study.

1.2.1. Breaching. The primary reason for breaching is to gain forceable access to 

a structure that was currently secured and inaccessible. Certain pertinent factors determine 

the physical and mechanic force level of a breach. These factors include noncombatants' 

presence, the need for stealth operations, the materials and tools at hand, and other 

determining force factors that a breacher needs to account for before choosing an 

appropriate force level. The structural material at the location which the breach would 

occur would also relate to the breaching technique required. If the access points were made 

up of a weaker material, a less forceful breaching method would be implemented, whereas 

a fortified structure would require a more aggressive technique (Lupoae M. , 2017).

The chosen force level of a breach determines which of five methods of breaching 

will be implemented. Breaching techniques focus on identifying the weak points of a 

location, such as doors or windows, and forcefully gaining access by physically damaging 

the weak point enough to obtain entry. Access could be achieved by breaking critical 

structural components on the desired access point, such as hinge points or lock points 

(Figure 1.1), to make the securing features fail.
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The force levels of breaching a structure have resulted in current practices of 

breaching. A low force level breach, such as lock picking, ramming, or prying, is known 

as a mechanical breach (Figure 1.2). These less forceful breaching levels are typically used 

when access to breaching equipment is limited or when stealth is required. Although these 

low force breaching levels appear simplistic in logic, they need trained professionals to be 

appropriately implemented (United States of America. CA Patent No. 8794597B1, 2014).

Figure 1.1. Structural weak points that are targeted for breaching operations (Department
of the Army, 2006).

Another technique of breaching is called thermal breaching. This technique 

involves using an exothermic chemical reaction, such as an oxy-acetylene torch or 

thermite, to melt through the door and gain access to the desired structure (Figure 1.3). The 

thermal breaching method is effective against metal blockades, but this technique is time 

demanding due to the length of time required to cut through the metal barricade. Thermal 

breaching has been widely used by the military and law enforcement agencies worldwide 

due to its reliability and overall effectiveness against almost all structural materials.



www.manaraa.com

5

Figure 1.2. Mechanical breach of a structure’s door by use of a ram (Ranum, 2013).

Figure 1.3. A thermal breach being performed using an exothermic torch to cut a metal
door handle (Cantrell, 2020).
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Hydraulic breaching is performed like a mechanical breach, but instead of brute 

force to enter a structure, hydraulic breaching uses hydraulic pressure from a hydraulic 

actuator to separate the door from its frame (Figure 1.4). Both methods reduce a door 

frame's structural integrity and allow a door to be removed by exploiting the weak 

attachment points. This forcible entry style is a standard method in fire rescue operations 

and civilian law enforcement operations due to the minimal damaging effects on the 

individuals inside the structure.

Figure 1.4. A hydraulic breach tool being used to expand a door frame outward to the 
point of breaking to allow entry into the building (Hansen, 2017).

A more rapid and forceful level of breaching is known as ballistic breaching (Figure 

1.5). A ballistic breaching technique uses a projectile accelerated from a weapon to damage 

the structure. Commonly, ballistic breaching of doors uses a buckshot shotgun to be fired 

multiple times at a door handle lock or the hinge points on the door. This breaching 

technique provides a rapidly deployable and effective breach against wooden and 

nonreinforced doors. Ballistic breaching has also been defined as a larger projectile or
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weapon used to breach a structure, such as a tank round or an artillery round that impacts 

a building (United States of America/ CO Patent No. 5883328, 1999). The major downfall 

of ballistic breaching would be the exposure of pressures to the breaching team from firing 

the ballistic weapon due to the required proximity to the breaching event and the chance of 

injury from fragmentation. There is also the risk of fatal injury to possible hostages or 

bystandersinside the structure.

Figure 1.5. A ballistic breach demonstration of a cut-off shotgun being used to damage a 
door lock enough to gain access (TACTICAL-LIFE.COM, 2007).

The final technique of breaching to be considered is explosive breaching. This 

technique requires the highest force level breaching technique and is viewed as the most 

dangerous (Figure 1.6). Explosive breaching requires detonating an energetic material to 

weaken the target structure to gain access (Akers, Breaching of Triple-Brick Walls: 

Numerical Simulations , 2007). This method is technical and requires expert knowledge to
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be implemented correctly but has proven effective on almost all structural materials 

(Cantrell, 2020). This style of breaching technique was the foundation of the investigation 

of this research.

Figure 1.6. United States Marines demonstrate an explosive breach using a linear 
shape charge centered on a wooden door (Long, 2013).

Explosive breaching is when a high explosive charge is detonated on the structure's 

point to gain a forceful access point. This technique requires an expert breacher to place a 

primed explosive directly on the proposed access point, then clear the immediate area and 

detonate the charge. The breaching team may immediately enter the structure through the 

blast’s access point (Cantrell, 2020).
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Explosive breaching requires breaching teams to be in proximity to the blast, 

allowing for a rapid entrance into the structure to eliminate the threats inside. The proximity 

could put the breaching crew in harm’s way of experiencing overpressures and possible 

shrapnel from the blast occurring close to them. Several countermeasures have been 

previously implemented to protect the breaching team, such as body armor and blast 

shields. Other techniques have been longer lead-in wires to the detonator or extended 

delay-time fuses to allow the breaching team the ability to gain a greater distance from the 

blast (Hetherington, 1994).

Exposure to the blast waves of explosive breaching has adverse health effects on 

the exposed breaching teams. Results of proximity to the blast waves have been reported 

to cause Traumatic Brain Injuries (TBI), loss of hearing abilities, and systematic effects on 

the autonomic nervous, vascular, and immune systems (Committee on Gulf War and 

Health: Long-Term Effects of Blast Exposures; Board on the Health of Select Populations; 

Institute of Medicine, 2014). When an explosive detonation occurs, extreme gas pressures 

expand into the blast site location due to the tremendous amount of energy released. The 

human body's vulnerability to these elevated air pressures has been limited by 

implementing personal protective equipment (PPE) and greater distances from the blast 

site. The breachers need to be close to the beach location to rapidly enter the structure 

following the explosion, thus making breaching teams performing explosive breaches 

vulnerable to increased health risks. A substantial part of this study evaluated the changes 

in blast peak pressure intensities at a close distance to the blast site to determine if the 

polyurethane confined detonations produced safer breaching environments for the 

breaching teams to conduct tactical operations.
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Composition 4 (C-4) or comp-four is a common explosive in both military and 

industrial fields. The C-4 used in this testing consisted of 91% plastic explosive 1,3,5- 

trinitro-1,3,5-triazine (RDX) bonded with a polyisobutylene binder (Figure 1.7) that 

allowed the material to be molded and shaped but would not fall apart easily. The 

mouldability and high-brisance capability of C-4, along with its other powerful explosive 

properties from a high detonation velocity, has made C-4 useful for demolition and 

breaching (Janssen, 2011).

0

0 -

Figure 1.7. Chemical structure depiction on RDX (National Center for Biotechnology
Information, 2021).

C-4 has been a common high explosive used for the explosive breaching technique. 

A C-4 breaching charge consists of a block of the energetic material molded together 

beforehand, with the block's size being determined by the structure that was planned on
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being breached. The explosive block could be wrapped in a thin but durable plastic to help 

sustain molded shape and assist with environmental wear. At the breaching site, the 

breacher could insert a detonator through the plastic and imbedded into the C-4 material. 

This primed charge may then be attached to the breach point by wedging it securely or 

adhering to the explosive with double-sided tape. The breaching team would clear the 

relative blast site and detonate the charge to enter the structure (Elbeih, 2019).

Another common breaching charge explosive is known as DetaSheet. DetaSheet 

explosives are rubberized explosives made of pentaerythritol tetranitrate (PETN), 

nitrocellulose, and a binding agent (Figure 1.8). PETN, a nitrate ester compound, is 

insoluble in water resulting in an explosive that is highly water-resistant (Chemring 

Energetics UK Limited, 2007). This explosive is typically manufactured into twelve-inch 

wide, quarter-inch thick, and twenty-feet rolls cut down to operational sizes. DetaSheet is 

a cap-sensitive, energetic material capable of powerful detonating capabilities (Cooper, 

1996).

DetaSheet is a standard selection for explosive breaching because of its demolition 

abilities and relatively lightweight. DetaSheet has been considered one of the more 

powerful and more brisant explosives available for demolition uses (Janssen, 2011). A 

breaching charge of DetaSheet can contain two, six-inch by twelve-inch rectangular strips 

of the quarter inch-thick material that were stuck together by taping the edges together. A 

double-sided tape may be applied to one side of the charge, and a detonator could be 

inserted between the two strips of explosive. The assembled breaching device could then 

be stuck to a breach point and detonated by the breacher in charge.
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Figure 1.8. Chemical structure depiction of PETN (National Center for Biotechnology
Information, 2021).

A KineStik charge is a binary charge that consists of ammonium nitrate (AN) 

products in one vessel and nitromethane (NM) in another vial. When the two products are 

separate and not mixed, they are less sensitive and not considered high explosive material. 

The AN alone is regarded as an oxidizer, and the NM is classified as a flammable liquid. 

When the AN and the NM are combined into a single vessel, ANNM, the two components 

become more sensitized and are classified as a high explosive. This binary explosive makes 

transport and handling of the energetic material safer. The KineStik binary explosive has 

vital detonation attributes that would make it ideal for explosive breaching usage (Bureau 

of Alcohol Tabacco and Firearms, 2014).

A KineStik explosive as a breaching charge allows the breaching team to transport 

and store the individual materials sealed in their respective vessels. When the breaching 

team was ready to use them, the team may insert the NM into the AN vessel and shake the
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material until a consistent color is shown throughout the transparent container. Then, the 

breaching team would insert a blasting cap into the vessel’s designed detonator well and 

adhere the charge to the structure with tape or wire. They would then clear the area and 

detonate the explosive to gain the necessary entry into the building.

Another binary explosive that has been introduced to the market of effective 

breaching charges is TexPak. This fully liquid two-part explosive comprises a mixture of 

diethylenetriamine and concentrated nitromethane (Figure 1.9). Like the KineStik binary 

explosive, the TexPak system is non-explosive when unmixed and classified as a corrosive 

and oxidizer. However, when the two parts are mixed, they fall into a 1.1 explosive 

classification. The TexPak system has beneficial attributes over the KineStik system as the 

TexPak charge is a fully liquid system that allows for instantaneous mixing and use. The 

KineStik system of Ammonium Nitrate solid prills and liquid nitromethane requires 

extensive mixing and reaction time to become a homogenous combination compared to the 

TexPak system.

The TexPak binary explosive manufactured by Tripwire Incorporated was designed 

specifically for tactical blasting operations. The two vials of liquid material are made to be 

one-third pound weight charges when mixed. The plastic canister comes equipped with a 

built-in blasting cap holding point to expedite the time requirements for priming the charge. 

The TexPak system can be primed with either a detonator or detonating cord and can be 

lodged into place or taped to a door's weak point that was being breached. The team would 

then retreat to a safe distance and then detonate the charge to access the structure.
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Figure 1.9. Chemical structure depiction of diethylenetriamine (National Center for
Biotechnology Information, 2021).

1.2.2. Confinement of an Explosive. The understanding that when an explosive 

is detonated, the first law of thermodynamic immediately becomes relevant as energy is 

never created or destroyed. The energy stored in an explosive material is converted 

directly from chemical potential energy into kinetic energy forces. Following the second 

law of thermodynamics concerning entropy, the conversion of energy can never be 100%. 

A detonation's kinetic energy is less than the initial potential energy of an explosive due 

to energy loss to thermal and sound energy (Atkins, 2010). This energy loss means that a 

blast's energy would immediately become less than its initial potential value and would 

continue to dissipate as the kinetic energy expanded into the surrounding environment. In 

an open-air explosion of an explosive, the blast energy expands equally in all directions 

away from the point of detonation until an equilibrium of the system is reached.
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The application of the first and second thermodynamics laws to an explosive blast 

would exploit the idea that the system's volume was limited to a closed system with 

boundaries that the explosion would occur. The same amount of energy in a small volume 

system would have a significant concentration of energy compared to the equal amount of 

energy in a more extensive volume system. The energy saturation would have a more 

substantial effect to cause destructive forces on the materials around it.

Confinement of an explosive blast is an attempt to limit the boundaries of the 

explosion's energy to focus the power of the explosion to cause more damage in the focused 

area. The blasting practice of confinement has been done to limit the blast forces from 

escaping the detonation point too rapidly and allowing for the blast's kinetic energy to be 

converted into compression and tension forces surrounding materials. This phenomenon is 

known as coupling of a charge and the effects to slow a blast's shock pressures to increase 

the chemical reaction rates occurring at the blast site.

The confinement of a charge limits the pressure rate decrease as the detonation front 

expanding outwards and results in a more effective chemical reaction zone of the blast. A 

more effective reaction zone means that an explosive's confinement makes the explosive’s 

detonation more sustainable, thus creating a smaller confined explosive as useful as a larger 

unconfined explosive (Persson, 1994). The technique of explosive breaching follows the 

same aspects as industrial surface blasting of boulders. Boulder blasting uses high 

explosives to fracture and break the large rock into smaller, more manageable pieces. 

Licensed blasters use a technique called mud capping or adobe. These blasting techniques 

require an explosive charge to be placed on a boulder’s surface and covering the charge 

with a mud casing (Figure 1.10). A charge detonated against a boulder's body allows four
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breakage mechanisms to occur: shock wave transfer, sustained gas pressures, relief gas 

expansion bending, and flexural failure resulting in fractures (Ezekiel Enterprises, LLC), 

(Konya, 1990).

Goad Better

Figure 1.10. Placement of explosive charges relative to a boulder's surface using mud 
capping techniques (Ezekiel Enterprises, LLC).

The detonation shock wave is understood to be the weakest and least damaging 

mechanism from the blast. The shock wave causes microfractures to occur on the material's 

surface, but no significant damages occur. Sustained gas pressures from the high explosive 

detonation cause substantial damage to the material’s surface by causing radial fractures to 

expand throughout the material. The radial fracturing causes splits throughout the material 

and weakens the sustainability of the material. The relief of the extreme gas pressures is an 

essential damaging mechanism to assist with the sustained gas pressure mechanism. The 

relief works in a perpendicular function to allow a bending effect of the material and further 

breakage of the material. Without the relief, the sustained gas pressures result in the blast 

cratering the material's surface instead of breaking the material's internal composition. The 

final mechanism, flexural failure, allows the material to push towards a free face and away
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from the blast energy. The bending away from the blast location flexes the material until 

the material reached its maximum sustainable tolerance and then breaks the material apart.

Explosive confinement for boulder blasting by mud capping technique would 

amplify the blasts' damaging effects. The mud encasement limits the amount of blast 

energy that would escape the surrounding environment and directs the energy towards the 

boulder’s surface (Figure 1.11). An unconfined charge’s detonation would not have any 

substantial damaging effects. The blast energy would be lost to the surrounding air 

environment because of the energy following the least resistant path. An unconfined charge 

would result in a small cratering effect against the boulder, whereas a mud capped confined 

charge would have directed blast energy and more damaging mechanisms.

The last three mechanisms of a material’s structural failure due to an explosive’s 

detonation, such as boulder blasting, are the same mechanisms recognized in explosive 

breaching. A door or wall would experience radial fracturing from excess gas pressures, 

which would be amplified when the gas pressures reached the relief points o f the opposite 

side of the door or wall. The final mechanism, flexural failure, would also be highly sought 

after in explosive breaching techniques. This mechanism would result in the wall or door 

bending inwards away from the blast point and result in an entry point into the structure.

Explosive breaching would be further related to commercial mining’s 

understanding o f coupling and uncoupling o f charges in borehole blasting due to the same 

expectations of the physical outputs of the detonation of the explosives (Cevizci, 2013). In 

rock blasting, an explosive is loaded into a drilled borehole and detonated to fracture and 

weaken the material into smaller pieces. The explosive forces are transferred from the 

detonation point into the surrounding environment in material tension and compression
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forces. These applied forces create excessive strain on the material, whether a rock face in 

a quarry or a door on a structure, which makes extreme shock wave loading energy that 

results in the material failure. The material's failure results in the required breakage of the 

material (Knepper, 2014).

Figure 1.11. The effect of directing the blast energy of a charge by mud capping (Ezekiel
Enterprises, LLC).

An explosive has been described as having the ability to apply six types of forces 

to a material’s surface to cause damaging effects. Those six forces were tensile, unconfined 

compressive, confined compressive, confined shear, triaxial torsion, and triaxial loading. 

The comparison between unconfined and confined compression forces was chosen as the 

testing focus of this study. The understanding that with the confinement of an explosive, 

lateral energy forces' expansion could be limited, and the compression forces become more 

significant than an unconfined detonation (Persson, 1994). The more bonded and
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interlocking the material is, the more influential the material would be to sustain the blast 

pressure and confine the blast (Feldgun, 2016). This study's initial testing addressed an 

unconfined comparison versus a confined explosive force using polyurethane foam 

material as the confinement material. This testing was designed to evaluate the work being 

done by the charge’s detonation on the surrounding environment. The first round of testing 

also assessed the bonding and interlocking effects of the polyurethane foam by varying the 

foam's cure times to evaluate changes in the blast forces.

Previous testing for breaching charge evaluation has focused on such variables as 

structural material strengths and required explosive weights for adequate damage to 

successful breach (Akers, 2007). Another testing has focused on the effects blasting has on 

the breaching teams being close to the detonation and possible relations to traumatic brain 

injuries (Kamimori, 2017). Only one other relevant study was found that focused strictly 

on evaluating the effects of a breaching charge’s performance when confined by a solid- 

state material (Lupoae M. , 2011). The study analyzed the possibility of water being used 

as a confinement material during an explosive breach. The water confinement breaching 

resulted in the water itself assisting in damaging effects by creating a cutting effect on the 

test breaching surface. The water jet resulted from the confinement water being accelerated 

by the detonation velocity of the breaching charge. The accelerated water system would 

prove useful damaging structural material requiring breaching but would possibly become 

a fragmentation hazard for the breaching team nearby. The effect of a cutting material jet 

formation would not be expected when testing the polyurethane foam material due to the 

density difference.
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While the understanding that a denser inert confinement material would be a more 

useful material in limiting the blast forces' escape, the optimal thickness levels of a 

confinement material are unknown. This study's secondary testing focused on evaluating 

the polyurethane foam material's minimal thickness levels required to indicate a change in 

blast forces due to confinement. While the secondary testing would not determine a 

maximum amount of confinement material that may influence the detonation pressures to 

optimize the blast, the results would indicate a rate at which the confinement thickness 

affected the explosions. The confining material was evaluated for its effectiveness in 

changing the detonation forces of various explosive blasts.

1.2.3. Plate Dent Test. The analysis of an explosive’s ability to perform damaging 

effects onto a given surface has historically been conducted to determine the explosive's 

strength level. Testing procedures, such as the crater dimension analysis of near-surface 

explosives (Cooper H. F., 1976) or the measurement of underwater explosive detonations 

test (Yancik, 1970), would be used to determine how an explosive would react when 

confined by a material and the effects that the blast would have on the surrounding area. 

Other explosive testing procedures, such as the lead block test (Snelling, 1912) or the 

cylinder compression test (TRZCINSKI, 2001), evaluated an explosive’s relative strength 

by assessing the work done when the detonation of the explosive occurs. The plate dent 

test has been a simple and relatively affordable procedure that would allow for an 

explosive’s strength to be evaluated and related to the chemical reaction's energy. The 

plate dent test procedure published by Los Alamos Scientific Laboratory (Pimbley, 1980) 

illustrated the plate dent test to be a quick and reliable way to analyze the relationship 

between an explosive’s ability to impact a crater onto a steel witness plate’s surface to the
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detonation pressures. This procedure calls for a cylindrical shape charge to be detonated 

directly on a steel plate thick enough that the steel plate would not bend or warp but instead 

have a crater dent imprinted on the detonation surface ( Figure 1.12). The resulting dent in 

the steel’s surface would then be quantified by measuring the dent's depth (Figure 1.13) 

and then related to the explosive detonation pressure. This relationship demonstrated an 

explosive’s ability to damage a material’s surface within proximity to the detonation.

In the field of explosive breaching, an explosive’s damaging effects to a material’s 

surface would need to be known and understood to ensure that the proper explosive was 

used for the appropriate material to allow for a successful breach to be achieved. This 

understanding made the Plate Dent test the chosen testing procedure for this study’s 

evaluation of a breaching charge’s detonation pressure or brisance ability. Brisance of an 

explosive has been used historically to describe an explosive’s ability to shatter or break a 

material such as steel, concrete, or any hard surface material (Persson, 1994).

This obsolete understanding of brisance has been modernized and updated as a 

relationship understanding between the of the Chapman-Jouget pressure (CJ pressure) or 

detonation pressure of an explosive relates the cratering ability of the explosive to the 

detonation pressures (Janssen, 2011), (Persson, 1994). While publications and studies exist 

that focus on calculating and testing for accurate brisance measurements and relating these 

values to the detonation pressure of the explosives to other explosives (Licht, 2000), this 

study was focused on determining the changes of brisance. This study was not focused on 

the determination of the exact brisance of the tested explosives compared to the previously 

published brisance’s of explosives.
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Figure 1.12. Sideview of original Plate Dent experiment test charge assembly (Pimbley,
1980).

Figure 1.13. Measurement of Plate Dent experiment witness plate after test charge
detonation (Pimbley, 1980).
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1.2.3.1. Modifications of the Plate Dent test procedures. Although the Plate Dent 

testing procedure described by (Pimbley, 1980) provided an effective way to determine an 

explosive’s brisance ability, the Plate Dent test did not incorporate modern scientific 

instrumentation. This limitation did not allow users to fully understand all the forces that 

an explosive was expelling when detonated. For this experiment, a few modifications to 

the prescribed Plate Dent procedure were performed to maximize the amount of data 

collected from a single detonation.

Figure 1.14. Fabricated steel platform device to house force sensor below test blasts of
Plate Dent test.

The first modification incorporated a force load-cell sensor to measure the 

compressive strength produced by the explosive charge. The inclusion of this
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instrumentation required the fabrication of a device that would securely protect the sensor 

from the blast wave but allow for the test plate's free motion to move. This realization led 

to the design and creation of the load cell housing structure (Figure 1.14). This device 

allowed for a secure platform for the Plate Dent test plate to be secured to a frictionless 

device that would transfer the blast's kinetic energy to the load cell sensor's compression 

forces to be recorded and analyzed. The new device provided all the needed testing 

requirements for analyzing an explosives force on a surface, with adequate protection of 

the instrumentation from the blast.

The final modification to the original Plate Dent procedure was to eliminate the 

requirement of testing and relating the explosives to TNT as a standard. The experiment 

was designed to determine relative changes in blast properties by utilizing polyurethane 

foam as a confining material. This experimental testing was not intended to focus on 

analyzing CJ pressures and comparing previously published data but strictly on the changes 

of the peak shock wave pressures, impact force, and brisance abilities of the selected 

explosives when confinement variables were altered.

I.2.3.2. Scientific instrumentation. The modifications from the (Pimbley, 1980) 

Plate Dent test procedure allowed for scientific blasting data to be incorporated into the 

explosive testing. The improvements would ultimately make a single detonation of an 

explosive capable of obtaining four data points (two pressures, a compression, and a Plate 

Dent depth) describing the blast versus a single data point. The testing procedure changes 

made each test more beneficial to determine if the polyurethane foam changes the blast 

effects' blast effects and makes testing more economical.
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As in most modern-day experiments, scientific instrumentation was implemented 

to record accurate and repeatable data points. In the event of testing the physical parameters 

of explosives that occur almost instantaneously, the selected instrumentation needs to be 

capable of recording the needed data points within milliseconds of the detonation 

occurring. Blasting instrumentation typically use Piezoelectric quartz materials that 

transfer the input force to an output voltage. These instruments are professionally calibrated 

and maintained to ensure the experimental results were accurate and justifiable.

Once the instrument and a relative voltage is detected, the blast’s force is outputted, 

the voltage needs to be processed through a signal conditioner. A signal conditioner will 

clean the voltages and eliminated possible signal noise interference. After the signal 

conditioner, the voltage needs to be recorded and stored by a data collection processor or 

a Data Trap.

Figure 1.15. Diagram of Sensor Signal Conditioner unit used for testing (PCB
Piezoelectonic , 2020).
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A data acquisition system, such as an MREL Data Trap II, is commonly used in the 

blasting industry to monitor and record a blast’s physical parameters. A Data Trap 

continually monitors the output signal from a signal conditioner (Figure 1.15) before the 

explosion occurs. Once an explosion occurs, the instrumentation would experience an 

increase or decrease in the instrument’s output voltage, and the Data Trap could begin 

recording the data (Figure 1.16).

Figure 1.16. Data Acquisition System (DAS) unit manufactured by MREL used for data 
collection while testing (MREL Group of Companies Limited, 2021).

A standard instrument for determining an explosive’s shock wave pressure is a 

pressure transducer. The two most familiar blasting pressure transducers are a pencil probe 

and a flush mount. The flush mount pressure transducer (PCB Piezoelectronics, 2020) can
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be threaded into a steel plate and used to record pressures inside a sealed tank, such as a 

blast chamber (Figure 1.17).

Figure 1.17. Flush-mount pressure transducer specification drawing (PCB
Piezoelectronics, 2020).

A pencil pressure probe (Figure 1.18) is designed to be directed at an open 

environment detonation point and encounter the blast’s shockwave as it passed by the 

instrument. One side of the pressure probe has a force sensor that transforms the pressure 

applied to the sensor’s surface area to a corresponding voltage. Both pressure instruments 

can measure the force applied to the sensor and output a relative voltage to be recorded and 

analyzed.

Understanding a spherical shockwave front meant that although the probes were

not in direct line with each other, the fact they had identical distances from the detonation
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site would mean they would experience approximately the same pressures of the 

shockwave (Figure 1.19). This understanding allowed the collected experimental probe 

data to reflect roughly the same pressure values. Both probes would have been placed at 

similar distances from the detonation point to simulate the shockwave pressures that a 

breaching team would experience in a side-on stacked breach. The collected data would 

help evaluate if the polyurethane foam confinement material had any effects that may affect 

the breaching team.

Figure 1.18. Diagram side view of piezoelectric pressure transducer selected for testing
(PCB Piezoelectronics, 2020).

Understanding a spherical shockwave front meant that although the probes were

not in direct line with each other, the fact they had identical distances from the detonation
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site would mean they would experience approximately the same pressures of the 

shockwave (Figure 1.19). This understanding allowed the collected experimental probe 

data to reflect roughly the same pressure values. Both probes would have been placed at 

similar distances from the detonation point to simulate the shockwave pressures that a 

breaching team would experience in a side-on stacked breach. The collected data would 

help evaluate if the polyurethane foam confinement material had any effects that may affect 

the breaching team.

Figure 1.19. An illustration of a spherical blast wave as it expands away from the
detonation site (Wunderli, 2014).

A force load-cell sensor is a scientific instrumentation capable of measuring 

compression and tension forces (PCB Piezoelectonics, 2020). The sensor's applied forces 

are converted into recorded output voltage and used to determine the sensor's load (Figure 

1.20). This instrumentation is not typically exposed directly to the blast of an explosion but
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more to determine the amount of kinetic energy applied to a point. This force is measured 

in tension, a pulling force, connecting the sensor at either side and stretching the sensor, or 

a compression force, by placing the sensor between two points and pushing the sensor ends 

towards each other.
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Figure 1.20. Specification illustration of the piezoelectric compression force load-cell 
chosen for experimental testing (PCB Piezoelectonics, 2020).

1.2.4. Polyurethane Foam. The polyurethane foam's attributes and physical 

properties made it an ideal candidate as a confinement material for explosive charges. Most 

commonly, polyurethane foam has been used as an insulation barrier in structural designs. 

The foam’s ability to expand and fill air voids in unusual locations around pipes and wires 

makes it a desirable insulating product compared to other solid-state insulation. Most 

polyurethane foams are manufactured in an aerosol arrangement to allow for a pressurized 

release of the foam to be forced into tight places and distributed across large areas
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efficiently, such as attics and walls. Some polyurethane foams are sold as unpressurized 

two-part liquid systems to be poured into the desired location, i.e., post holes or cinderblock 

centers, to replace concrete.

Polyurethane foam reactants consist of isocyanate and polyol resin blend polyols, 

which when mixed, undergo an oxidation reaction that forms Hydrazoic acid, water, 

and carbon dioxide products. As the organic compound's exothermic reaction occurs, the 

products expand and multiply the physical volume, resulting in a foam product (Figure 

1.21). Once expansion has slowed, the foam surface begins to harden as the product cures. 

For this experiment's chosen polyurethane foam products, the manufactures reported the 

curing hardness levels in two phases.

Figure 1.21. A two-part liquid foam was combined and stirred to demonstrate the 
expanding reaction of polyurethane foam (Carpenter, 2011).

The first curing level was called “Tack-Free,” meaning the foam had been applied 

long enough to provide maximum protection to the surface without disruption or damage 

(Corrosion Pedia, 2017). The manufacture's datasheet estimated this time to be five to 

fifteen minutes after application of the foam. The final cure time was noted when the foam 

had been applied long enough that the polymer chemical reaction had reached completion
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and the foam was fully set. The manufacturers estimated this full cure time to be eight 

hours after applying the foam (Grainger, 2020).

The polyurethane foam's attributes to expand and fill air voids within an applied 

area makes it an ideal material for stemming or confining a blast. The foam would be 

capable of filling a horizontal or vertical borehole, whereas crushed stone or water would 

not. Polyurethane foam has been previously tested as a confinement material for military 

uses as a counter to landmines (Alba, 1997). The idea of the testing was to coat the 

landmine field with a polyurethane foam material and allow safe passage of military 

vehicles across the hazardous area by either incapacitating the landmine triggering system 

or by confining the explosion of the landmines. The U.S. Navy’s testing resulted in the 

findings that when the polyurethane foam was poured to certain thickness levels, blast 

mines' explosive effects were neutralized and made feasible for an alternative for counter­

minefield option.

The Navy’s Rigid Polyurethane Foam (RPF) study applied to this study following 

similar logic that the RPF would reduce the blast effects from one direction and direct the 

explosion in the opposite direction. The redirection of explosive power applied to a 

breaching charge would make smaller charges more damaging and explosive breaches 

more effective following commercial blasting’s mud capping logic. The RPF confinement 

material would also provide additional protection to a breaching team from the blast effects 

by limiting the blast towards the breach site location. The RPF could also eliminate the 

production of any possible harmful fragmentation hazards due to the low density and
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flammable material being burned up in the blast. The effects of explosives comfined by 

RPF could be greatly beneficial to improving an explosive breeach’s force while protecting 

the breaching team performing the breach.



www.manaraa.com

34

2. METHODOLOGY

2.1. POLYURETHANE FOAM AS A CONFINEMENT MATERIAL

This study focused on analyzing and determining any effects that rigid polyurethane 

foam (RPF) had when used as a confinement material around a breaching charge. The 

testing was designed to investigate the changes of compression forces, blast pressures, and 

brisance crater abilities on four types of explosives (C-4, DetaSheet, KineStik, and TexPak) 

using a modified Plate Dent procedure. The testing was focused on determining changes 

in peak shockwave pressure, impact compression force, and brisance abilities of a 

breaching charge confined by RPF compared to unconfined charges. Variables changed to 

determine explosive performance included foam thickness and foam cure-time (Table 2.1). 

The experiment test procedure was designed so that one detonation of an explosive would 

result in two pressure recordings, a force impact reading, and a plate dent depth.

Table 2.1. Outline of testing for Rigid Polyurethane Foam (RPF) confinement material
encasing an explosive breaching charge.

Chosen
Variable

Explosives
Tested

Explosive 
Weight (oz)

Expected Outcome

First
Round

No Changes C-4, DetaSheet, 
KineStik, 
TexPak

5.80 ±0.02 Baseline Data

Second
Round

Foam Cure 
Time (3.5, 10, 

20, 30 min)

C-4, DetaSheet, 
KineStik, 
TexPak

5.80 ±0.02 Confinement data 
and optimal foam 

cure time

Third
Round

Foam
Thickness

C-4 3.53 ±0.04 Optimal foam 
thickness
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The initial testing was to collect baseline data values of unconfined charges. These 

unconfined charges were to collect baseline force values for each of the four types of 

explosives. The second round of testing focused on collecting data points of the 

standardized charges when confined by a spray RPF. The only change from the baseline 

testing was applying a 12-oz spray RPF to each charge with varying foam cure times. A 

data point was collected for a 3.5-, 10-, 20-, and 30-minute foam cure time for each of the 

four types of explosives. The goal was to determine any changes in the tested explosive 

parameters from the baseline due to the RPF confinement and respective cure times.

The third round of testing focused on determining an optimal RPF thickness to 

encase a breaching charge to maximize the desired blasting attributes. For this testing, C- 

4 was selected as a standardized breaching charge due to the positive results C-4 had in the 

previous rounds of testing. The test charges were reduced by 60% because of the 

outstanding RPF confinement results exceeding the instrumentation’s limitations. The 

same modified Plate Dent procedure was used, with the only variable being the RPF 

thickness around each charge. Ten RPF blocks, with known varying dimensions, were 

tested by inserting the C-4 charge inside the RPF blocks.

The testing was not designed to compare the previously published performance 

properties of the chosen explosives to the experimental results. All established standard 

operating procedures of Missouri S&T’s Experimental Mine (Department of Mining 

Engineering , 2017) were followed whenever handling or detonating explosive testing was 

performed.
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2.2. SCIENTIFIC INSTRUMENTATION

The incorporation of scientific instrumentation was a vital step to collect valid data 

points for this study. Since a detonation occurs almost instantaneously, the use of 

specialized blasting instrumentation was necessary. All sensors measured the applied 

forces from the blast and converted them into an outputting voltage signal. The signals 

were passed through a signal conditioner and then recorded by an MREL data acquisition 

system. This advanced blasting system could capture the blast effects as they occurred and 

storing the data for later analysis.

The first instrument chosen to incorporate into the testing was a load-force sensor 

that measured the compression forces applied to the sensor. The fabrication of a sleeve- 

style device (Figure 1.14) to safely house the load sensor from the explosive forces but still 

record the work being done by the blast was needed. The sensor’s cable was routed through 

the device and through steel-tubing to the signal conditioner to ensure no damage was done 

to the line. The load-cell was held centered on a lower stationary part of the sleeve device 

by a guide pin to ensure the sensor did not drift around on the plate. The upper non­

stationary part of the sleeve device was slipped over the lower stationery. This upper non­

stationary part of the device was designed to directly hold the Plate Dent test plate above 

the load cell sensor and slide straight downwards onto the load-cell. The upper non­

stationary part of the device was built wide enough so that there were no contacting points 

to the lower stationary part of the device so that no friction between the two pieces would 

be experienced.

A pressure transducer system was incorporated into the testing design to record the 

shockwave pressures that the breaching charges were generating. In these experiments, two
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pencil-probes pressure transducers were chosen to measure the blast’s shock wave pressure 

forces at equal but different directional distances from the detonation point. Pressure probe 

one and pressure probe two were pointed at a ninety-degree angle from one another, mainly 

due to the underground testing facility's constraints. Since the testing was performed in an 

underground facility, these testing results would best be related to a breach inside of a 

structure, such as a building hallway entering a room, rather than an external structure 

breach. The pressure wave characteristics would be expected to be slightly different if 

performed in an open testing facility. Following (Stewart, 2013), a blast’s shockwave could 

be understood to be spherical as it extended away from the detonation point. Both 

transducers were secured at heights level with the test charges.

2.3. PROCEDURE

The testing arena and instrumentation pieces were assembled as described in Figure

2.1, which shows locations and required testing equipment. The pressure sensor probes 

were selected to be set distance away from the detonation test site to replicate a breaching 

team's typical distance from the breaching location. The testing was performed to simulate 

a side-stack breach rather than a head-on breach. The underground testing location was 

equipped with only one entrance/ exit portal to improve site security during testing. The 

MREL Data Trap collection device and Piezo-electronic signal conditioner were located at 

the farthest possible point away from the blasting site, limited by the instrumentation coax 

cable lengths. This placement location was chosen to minimize blast forces from damaging 

the instrumentation. The blast site was within proximity of a ventilation fan to minimize 

harmful gases after the blasts occurred.
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Figure 2.1. Underground testing site layout of instrumentation placement about testing 
detonation location. Pencil probe distances from the blast site varied on testing.

The original Plate Dent test (Pimbley, 1980) did not specify an explosive weight of 

the test charges but rather the dimensions of a cylindrical test charge of 1.625 inches in 

diameter and 8 inches tall. The unspecified weight charge was detonated by a blasting cap 

with a booster charge. In this experiment, the charge size was altered from a dimension 

limitation of the test charges to an explosive weight limitation. All the charges were still 

limited to 1.25-inch diameter, but the test charges' heights were varied to meet the 

explosive weight requirement. The Plate Dent witness plates were A36 cold rolled steel 

pre-cut into 6-inch square plates that measure 2-inches tall for all tests.

The experiment's desired outcome was not to compare relative explosive strength 

weights to one another but rather to compare the chosen breaching explosives' actual 

physical weight. The reasoning behind the charge's physical weight being the study's focus 

was to the relation to the actual weight a breach team member would endure carrying a
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charge to the breach point. No boosters were used in this experiment as all the chosen 

explosives were cap sensitive, and a booster charge would not have always been equipped 

in the field. This alteration allowed the testing results to illustrate the breaching charges' 

capabilities as they would perform in real-life operations.

2.3.1. Unconfined Testing. Four types of breaching charges (C-4, DetaSheet, 

KineStik, and TexPak) were selected for testing. Three tests were performed for each of 

the four explosive types to determine a baseline for each of the tested explosive properties 

(peak shockwave pressure, compression impact force, and brisance crater ability). All 

explosive test charges were prepared in one-inch diameter, five-inch-tall plastic containers, 

or left in manufactured plastic packaging, meeting similar container dimensions. All test 

charges' total gross weight was set to have an explosive weight of 5.80 ± 0.02 ounces.

A prepared and pre-weighed test charge was placed in the center of a new Plate 

Dent steel witness plate located on top of the fabricated testing device (Figure 1.14) 

containing the force load-cell sensor. The use of electrical tape was implemented to secure 

the test charge upright on the witness plates. The tape was applied in minimal amounts to 

decrease any confinement changes that the tape may have caused (Figure 2.2).

An electric blasting cap was inserted into the explosive material or in the 

manufactured blasting cap well on the explosive container and connected to a lead-in a shot 

reel line. The MREL Data Trap was armed, and the testing site was cleared of all personnel. 

The explosive was then detonated, and auxiliary fans then ventilated the underground 

testing site for mandated times by the testing site’s standard operating procedure 

(Department of Mining Engineering , 2017). Once the testing site's reestablished adequate 

air quality, the area was cleared safely by a qualified research member. The Plate Dent test
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witness plate (example shown in Figure 2.3) was retrieved and labeled for later dent depth 

analysis. The sensor data collected by the MREL Data Trap was stored until testing was 

completed and then downloaded and analyzed using MREL Data Trap software.

Figure 2.2. Unconfined baseline test for TexPak charge using the fabricated device to 
protect the load-cell sensor below the blasting site directly.

Figure 2.3. Example of a Plate Dent crater on a witness plate to analyze an explosive's
brisance cratering abilities.
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2.3.2. Confinement Testing. The same procedure for RPF confinement testing was 

followed as the unconfined testing except for the foam's application. Once the 5.80 ± 0.02 

oz charge was primed, an entire twelve-ounce can of spray polyurethane foam was 

dispensed, encasing the charge. The foam was relatively distributed around charge in the 

effort to cover the entirety o f the test explosive (Figure 2.4). The RPF was cured for a 

variable amount of time (3.5-, 10-, 20-, 30-minutes) before the charge was detonated. The 

3.5-minute cure time was the shortest time lapse to safely apply the RPF, secure the testing 

site, and detonate the charge. For the 15- and 20-minute cure time tests, an open-ended 

cardboard box was used to ensure no foam was spilled while waiting for the elapsed cure 

time to pass. The cardboard box was placed between the fabricated force sensor protection 

device’s top platform and the bottom of the Plate Dent witness test plate.

Figure 2.4. Confinement test of TexPak 10-minute foam cure time.
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Once the site was secured, and the RPF had cured for the prescribed amount of 

time, the test charge was detonated, and ventilating would occur. After air quality was 

deemed safe, the Plate Dent test plate was collected and labeled for later analysis for dent 

depth and dent radius. The sensor data collected by the MREL Data Trap was stored until 

testing was completed and then downloaded and analyzed using MREL Data Trap 

software. This confinement procedure was repeated for each of the four cure times (3.5, 

10, 15, 20 minutes) for each of the four types of explosives (C-4, DetaSheet, KineStik, 

TexPak), totaling sixteen confinement trials.

2.3.3. Volumetric RPF Testing. Ten variant size mold canisters were selected 

with a ranging diameter from 2 to 18 inches (Figure 2.5). The molds were filled at least 

halfway with a mixed two-part liquid RPF resin and allowed to fully cure for 48-hours 

compared to the manufacture’s specification cure time of twelve hours. The mold canisters 

were then removed with care not to damage the surface of the RPF. A 1.25-inch diameter, 

5-inch-deep hole was drilled into the center of each of the cured foam blocks (Figure 2.6). 

The shortest measurement from the foam's outer edge to the drilled hole's edge was 

measured by a digital caliper and recorded as the RPF radius for each block.

At the explosive testing location, a change in the testing arena set up was made of 

the pressure transducer probes' locations compared to the previous testing. Instead of the 

pressure probes being equidistant from the blast location, the probes were placed at varying 

distances. One pressure probe was placed at ten-feet from the blast site, and the other 

pressure probe was placed at fifteen- feet from the blast site. The pressure probe placement 

change was done so that the positive peak pressures' effects could be analyzed as the 

blasting site's distance increased to determine changes in the explosion effects a breaching
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team would experience. C-4 was selected as a standardized breaching charge due to the 

positive results the C-4 explosive had in the previous rounds of testing. The C-4 charges 

were reduced from 5.80 ± 0.02 oz. to 3.53 ±0.04 oz. for this round of testing because of the 

outstanding RPF confinement results exceeding the force load-cell sensor’s 

instrumentation limitations in the second round of testing. The same modified Plate Dent 

procedure from the unconfined testing was used, with the only variable being the RPF 

thickness around each charge.

Figure 2.5. Ten rigid polyurethane foam blocks cast with variable dimensions used for
volumetric confinement analysis.

The same procedure was used as the unconfined baseline tests apart from using a 

reduced C-4 charge and the RPF blocks confining the charges. Each RPF block was 

prepared individually by inserting a primed 3.53 ±0.04 oz., C-4 charge into the block's
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previously drilled hole. The block was then placed directly on a fresh Plate Dent witness 

plate with the C-4 test charge centered on the witness plate. If needed, the foam block was 

secured firmly to the witness plate using tape. The same testing procedures were then 

followed until all ten RPF blocks were tested, ensuring to label each witness plate properly 

after each test for later analysis of plate dent depth and dent radius. The sensor data 

collected by the MREL Data Trap for the volumetric confinement testing were stored until 

testing was completed and then downloaded and analyzed using proper MREL Data Trap 

software.

Figure 2.6. Rigid polyurethane foam block drilled hole diameter and block radius
measurement.

2.3.4. An Example of a Single Test Charge Blast. An empty pre-weighed plastic 

test canister was tightly filled with 5.80 ± 0.02 ounces of C-4 material. A shunted electronic 

blasting cap was inserted in the top of the test charge at least three-quarters of the blasting
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cap length and ensuring actual contact with the C-4 material by packing the explosive 

material around the blasting cap. The assembled test charge was then carefully placed on 

the center of a new steel witness plate centered on top of the fabricated device (Figure 1.14) 

containing the compression force load-cell. The testing instrumentation was verified to be 

in working conditions by demonstrating status lights on the piezoelectric signal 

conditioner, which did not indicate a short or open in the circuit. The MREL Data Trap 

was armed by pushing the “Next Test” button, followed by pressing the “Arm” button. 

This arming sequence was verified by the MREL Data Trap illuminating a red light labeled 

“Armed.” All personnel secured the testing area, and each trial detonation followed the 

S&T’s Experimental Mine standard operating procedure for underground blasting 

(Department of Mining Engineering , 2017). After the blast, auxiliary fans then ventilated 

the blast site for approximately fifteen minutes before anyone reentered the detonation 

location. Once a safe air quality was reestablished and deemed non-hazardous by the 

blaster in charge, the area was inspected for the test charge's proper detonation. The witness 

plate of the test charge detonation was collected and labeled adequately for analysis later. 

The instrument data collected by the MREL Data Trap was stored until testing was 

completed and then downloaded and analyzed using proper MREL Data Trap software.

2.3.5. Data Analysis. After the detonation was completed, all the piezoelectric 

instrumentation data was collected and stored by the MREL Data Trap. The stored 

experimental data was downloaded from the MREL Data Trap using a software system by 

MREL Blasting Instrumentation called “DAS Data Acquisition Suite” (MREL Blasting 

Instrumentation, 2020). The software sorted the collected data by trial number. Each test 

was then further sorted into the corresponding channel of each instrumentation sensor.
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Figure 2.7. Raw data graph of voltage recorded during TexPak baseline test by channel
one pressure transducer sensor.

The data collected by each instrument was displayed in a channel-specific graph 

(Figure 2.7) with recorded instrument voltage (V) on the y-axis and time (ms) on the x- 

axis. The MREL software was then used to apply the appropriate unit conversion to the 

data collected using calibration sheets for each respective instrument. The pressure sensors 

data was converted from volts (V) to pounds per square inch (psi). The compression force 

sensor data was recorded in volts (V) and converted into pound-force (lbf). The MREL 

software then displayed the test data in the proper unit graphs (Figure 2.8). The positive 

peak pressures and the compression force for each trial could be determined and recorded 

for analysis.
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Figure 2.8. Converted data graph of pressure recorded during TexPak baseline test by
channel one pressure transducer sensor.
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3. TEST RESULTS

3.1. RESULTS OF BASELINE AND CURE TIME CONFINEMENT

The results found from this study were collected by the MREL Data Trap System 

and processed using the associated software. The Plate Dent data was manually recorded. 

These collected data points were consolidated into these findings.

3.1.1. Plate Dents. The Plate Dent test demonstrated the four types of 

explosives' brisance abilities by creating a blast crater on the six-inch square, two-inch- 

thick A36-steel witness plate. The crater depth was measured for each test with a digital 

depth gauge with a magnetic stand for stability. The depth gauge was zeroed using the 

witness plate's undamaged part, and then the deepest point of the crater was found by 

passing the depth gauge over the entirety of the cavity to find the most significant value 

measured by the depth gauge. Each test's crater radius was found by measuring the crater's 

greatest diameter using a digital caliper. All crater dimension values were recorded in 

(Table 3.1). The Plate Dent results were averaged respectfully of the three unconfined tests 

for each of the four explosive types to establish a baseline value.

The baseline testing results depicted the four types of tested explosives (Figure 3.1). 

The baseline testing showed a difference in the explosives’ strengths, with the TexPak 

binary explosive being the most damaging explosive with a crater depth of 0.388 ± 0.005 

inches. The averaged dent depth was approximately twice as deep as the DetaSheet depth 

(0.189 ± 0.005 in.), four times deeper than C-4 depth (0.088 ± 0.005 in.), and eighteen 

times more profound than the KineStik crater depth (0.021 ± 0.005 in.).
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The unconfined KineStik explosives tests were unable to damage the witness plates. 

No dent depths were visible on the witness plate except in one of the three initial trial 

detonations. Several additional retrials for the KineStik baseline trials were executed, but 

no cratering was seen on the witness plates. This resulted in several data points for the 

KineStik explosive to be left undetermined.

Table 3.1. Measurements of the depths (in.) of the craters created on witness plates by the
tested explosive charges.

Baseline Average
3.5 Min. 

Cure
10 min. 

Cure
20 Min. 

Cure
30 Min. 

Cure

C-4 0.0875 0.0875 0.1011 0.1025 0.1130

DetaSheet 0.1893 0.2348 0.2515 0.3050 0.3305

KineStik 0.007 No Dent No Dent 0.0245 No Dent

TexPak 0.3887 0.4100 0.4305 0.5100 0.6010

The tested DetaSheet charges would create good craters in the Plate Dents, but the 

crater dent depth and crater dent radius were noted to be inconsistent. These variations 

were likely due to the select loading procedure utilized for preparing the charge. The 

DetaSheet charges produced a swirling style crater in the test plate due to the DetaSheet 

being a sheet explosive and being rolled to fit into the experimental plastic charge 

containers (Figure 3.2). For any future testing of DetaSheet explosives using the Plate Dent 

test, a different loading procedures would be recommended.
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Figure 3.1. Unconfined averaged baseline Plate Dent witness Plate Dent depths of the
four tested explosive types.

Figure 3.2. Unconfined DetaSheet Plate Dent baseline trial showing the inconsistency in
cratering due to chosen loading procedure.
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The variable cure time RPF confined detonations were evaluated the same as the 

unconfined detonations by measuring the crater depths (Table 3.1). The variances of cure 

times of the polyurethane foam confined detonations were compared to determine blast 

effects changes because of longer foam cure times (Figure 3.3 - Figure 3.4).

0.6

DetaSheet

0.5

----------- DetaSheet
Baseline

° . 4

0.3Q
TexPak

TexPak
Baseline

0.1

0
0 5 10 15 20 25 30

Foam Cure Time (min)

Figure 3.3. Measured Plate Dent crater depths with variable rigid polyurethane foam cure 
times for DetaSheet and TexPak explosives. The solid lines are the Plate Dent depths 
confined by variable cured foam, whereas the dashed lines are respective explosive’

unconfined average Plate Dent depth.

Comparing the confining RPF dent depths with varying cure times of 3.5-, 10-, 20­

, 30-minutes indicated a linear relationship for C-4 and TexPak. The C-4 dent depth 

increased by 29% from a 3.5-minutes cure time to a 30-minute cure time. The TexPak 

experienced the largest dent depth increase of 46% from a 3.5-minutes cure to a 30-minute 

cure time. A logarithmic rate of change was fitted for the DetaSheet dent depth as the RPF 

cure time increased. A 41% dent depth increase occurred by curing the confinement RPF
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for 30-minutes as opposed to 3.5-minutes. The KineStik explosives could not provide 

appropriate data points for cratering as the only notable dent occurred on the 20-minute 

cure time trial. The other KineStik trials resulted in no damage done to the witness plates 

even after repeated attempts were performed. The three other explosives tested followed 

the trend that the longer the foam could cure, the deeper the dent depth was found.

Figure 3.4. Measured Plate Dent crater depths with variable rigid polyurethane foam cure 
times for C-4 and KineStik explosives. The solid lines are the Plate Dent depths confined 

by variable cured foam, whereas the dashed lines are respective explosive’ unconfined
average Plate Dent depth.

3.1.2. Pressures. The shockwave peak pressures of the blast of a breaching charge 

needed to be determined during testing to identify the changes in pressure that a breaching 

team may experience in the proximity of the explosion. The four types of explosives tested, 

confined and unconfined by the RPF, were detonated fifteen feet from two pencil pressure 

probes placed perpendicular. The peak pressures recorded by both pressure probes were 

recorded in voltage converted to pounds per square inch (psi) by MREL software.
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Table 3.2. Recorded blast pressure (psi) of unconfined and polyurethane confined
detonations.

Baseline
Average

3.5 Min. 
Cure

10 min. 
Cure

20 Min. 
Cure

30 Min. 
Cure

C-4 3.7026 3.4954 3.5467 3.7121 3.8354

DetaSheet 3.6530 3.0850 3.2727 3.6100 3.6566

KineStik 1.5858 1.5162 1.6992 1.6918 1.8181

TexPak 4.6584 1.9579 2.0131 3.4403 3.7174

The four types of explosives were each detonated three times in an unconfined, 

free-field set-up to collect a baseline of the peak pressure expected from an open charge 

detonation. The unconfined explosives' positive peak pressures were averaged (Table 3.2) 

between the two pressure probes for each shot and compared to the other tested explosives 

(Figure 3.5 - Figure 3.6). This data combination was possible because the pressure probes 

being the same distance from the detonation site and the understanding of spherical 

detonation shockwaves.

A notable difference was seen between the tested explosive’s peak pressures. The 

TexPak charges had the highest average peak pressure of 4.6585 ± 0.0001 psi, in contrast 

to the KineStik charges had the lowest averaged peak pressure of 1.5858 ± 0.0001 psi. This 

difference in peak pressure forces would be critical information for a breaching team to 

consider when selecting a breaching charge. This determination would be a set standard to 

select a safe proximity that a breaching team would need to be from the blast location to

ensure minimal health risks.
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re 3.5. Averaged positive peak pressures were recorded at 10 feet by channel one 
pencil probe of unconfined explosives.
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Figure 3.6. Averaged positive peak pressures were recorded at 15 feet by channel three
pencil probe of unconfined explosives.
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Figure 3.7. Recorded positive peak pressures with varying rigid polyurethane foam cure 
times for DetaSheet and TexPak explosives. The solid lines are the peak pressure 

confined by variable cured foam, whereas the dashed lines are respective explosive’
unconfined average peak pressures.

The RPF peak pressures with varying cure times were averaged between the two 

pressure probes and the relative tested explosives’ peak pressures. The collected data 

(Figure 3.7 - Figure 3.8) showed the effects of the breaching charges' peak pressures when 

the RPF was used as a confinement material. An increase in positive peak pressure was 

determined by confining the tested explosives compared to the unconfined tested 

explosives. The polyurethane foam's cure time indicated that the longer the cure time, the 

blast pressure increases. The tested variable of the polyurethane foam cure time also 

indicated that the longer the RPF around the test charges could cure, the greater the peak 

pressure would be recorded. The cure time would be limited by the amount of time that a 

breaching team had to perform a safe and effective breach.
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Figure 3.8. Recorded positive peak pressures with varying rigid polyurethane foam cure 
times for C-4 and KineStik explosives. The solid lines are the peak pressure confined by 

variable cured foam, whereas the dashed lines are respective explosive’ unconfined
average peak pressures.

The theory for this trend was that by extending the amount of time between 

application of the foam, and before the charge was detonated, the RPF confinement 

material would have different levels of curing. RPF cures from the outside, inwards as the 

organic cyanate group reacts with water in the surrounding air. This reaction establishes a 

cured harden-surface and uncured inner sub-structure. The longer that RPF cured, the 

harder the inner sub-section became. By detonating a charge inside of this diaphragm-like, 

partially cured RPF structure, the shockwave expands outwards, passing through the 

uncured RPF and striking the more solid outer surface of the RPF. This interaction would 

result in reflected shockwaves until the RPF surface was broken and the shockwave 

pressure could escape into the surrounding open-air environment.
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Another measurement derived value considered in this testing was the positive 

phase impulse (Table 3.3). The positive phase impulse of a shockwave is the area under 

the positive phase of the pressure versus time waveform. For this experiment, the positive 

impulse values were found by transferring the MREL pressure data for each trial into a 

data plotting software capable of integrating the area under each positive peak curve. The 

integral was set from the peak pressure spike to the first point that the pressure returned to 

ambient pressure value (x-axis).

Table 3.3. Measured positive phase impulse (psi*ms) for unconfined and variable rigid 
polyurethane foam cure-time confinement material for four types of explosives.

Baseline
Average

3.5 Min. 
Cure

10 min. 
Cure

20 Min. 
Cure

30 Min. 
Cure

C-4 2.692 7.529 7.51 7.055 7.408

DetaSheet 2.465 8.377 7.524 7.647 7.903

KineStik 1.655 3.748 4.054 3.916 4.07

TexPak 2.694 9.732 10.867 11.192 11.651

The positive phase impulse was seen to increase all four types o f  tested explosives 

(Figure 3.9 - Figure 3.10). This increase of positive impulse would indicate that the 

application of RPF would increase the amount of impulse force that a breaching team 

would encounter by using this purposed technique of breaching compared to conventional 

unconfined charge techniques. This effect on the breaching team could be harmful to the 

breaching team and may present unwantful blast forces to the breaching team. Further 

research into this possible risk would be suggested.
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Figure 3.9. Positive phase impulse changes for TexPak and DetaSheet explosives as rigid 
polyurethane foam confinement material cure-time was extended. The dashed line 

indicated unconfined baseline positive phase impulse for respective explosive types.
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Figure 3.10. Positive phase impulse changes for C-4 and KineStik explosives as rigid 
polyurethane foam confinement material cure-time was extended. The dashed line 

indicated unconfined baseline phase impulse for respective explosive types.
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Table 3.4. Measured duration of first positive phase of shockwave (ms) for unconfined 
and variable rigid polyurethane foam cure-time confinement material for four types of

explosives.

Baseline
Average

3.5 Min. 
Cure

10 min. 
Cure

20 Min. 
Cure

30 Min. 
Cure

C-4 2.96 3.14 3.09 2.97 2.86

DetaSheet 3.33 2.78 2.84 2.75 2.67

KineStik 2.32 2.18 2.84 2.72 2.99

TexPak 3.08 3.13 3.51 3.36 3.43

The duration of the first positive phase of the pressure shockwave was determined 

by analyzing the data outputted by the pressure transducers. The time at which pressure 

initially spiked was subtracted from the time at which the pressure transitioned from a 

positive pressure to a negative pressure. This value was recorded in milliseconds (ms) in 

Table 3.4.

3.1.3. Compression Forces. Implementation of a load-cell force sensor into the 

testing made it possible to analyze compression forces that a breaching charge applies to a 

surface that the charges were detonated against. The load-cell provided applied work values 

of a breaching charge as it converted chemical potential energy into kinetic energy.

During the first round of unconfined charge testing, a baseline compression force 

value was collected for each of the four types of tested explosives. These baseline values 

were obtained by performing three unconfined detonations of the explosives directly above 

the load-cell sensor (Table 3.5).
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Table 3.5. Recorded compression forces (lbf) of unconfined and polyurethane confined
detonations

Baseline Average
3.5 Min. 

Cure
10 min. 

Cure
20 Min. 

Cure
30 Min. 

Cure

C-4 3,561 24,780 74,070 103,900 103,900

DetaSheet 5,523 3,215 3,491 1,726 3,009

KineStik 3,059 3,721 12,150 65,180 66,820

TexPak 83,210 49,540 66,650 74,770 92,490

A large difference in pound-force was seen when comparing the four tested 

explosives' unconfined baseline values. The TexPak unconfined compression forces were 

seen to be approximately ten times greater than the other tested explosives. The KineStik 

explosives were seen to apply the weakest compression forces. The three baseline values 

were averaged together respectfully to establish a relative compression force value for each 

type of explosive detonated in an open-air, unconfined environment (Figure 3.11).

The tested breaching charges' detonations demonstrate the compression force 

changes when confined by the varying cure time RPF (Figure 3.12 - Figure 3.13). The C- 

4, KineStik, and TexPak explosives followed a logarithmic trend that best described the 

relationship between the variated RPF cure time and the foam's confined blast compression 

forces. The load-cell recorded a rapid increase in compression forces for these three types 

of explosives between the 3.5-minutes and the 20-minute cure time points. At the 30- 

minute cure time, a flattened trend line indicated that the compression forces reached their 

respective maximum values for each of the three explosives. A logarithmic trend of these 

three explosives would suggest that an optimal cure time for the RPF confinement material
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would be 20-minutes to maximize compression forces but minimize cure time. The 

DetaSheet explosives presented an irregular trend line that would suggest that the 

compression forces of the DetaSheet explosives were unaffected by the RPF confinement 

material (Figure 3.12 - Figure 3.13).
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Figure 3.11. Average recorded compression forces of unconfined baseline tests measured
by the load cell sensor.

The tested breaching charges' detonations demonstrate the compression force 

changes when confined by the varying cure time RPF (Figure 3.12 - Figure 3.13). The C- 

4, KineStik, and TexPak explosives followed a logarithmic trend that best described the 

relationship between the variated RPF cure time and the foam's confined blast compression 

forces. The load-cell recorded a rapid increase in compression forces for these three types
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of explosives between the 3.5-minutes and the 20-minute cure time points. At the 30- 

minute cure time, a flattened trend line indicated that the compression forces reached their 

respective maximum values for each of the three explosives. A logarithmic trend of these 

three explosives would suggest that an optimal cure time for the RPF confinement material 

would be 20-minutes to maximize compression forces but minimize cure time. The 

DetaSheet explosives presented an irregular trend line that would suggest that the 

compression forces of the DetaSheet explosives were unaffected by the RPF confinement 

material (Figure 3.12 - Figure 3.13).

DetaSheet

— — — DetaSheet 
Baseline

TexPak

----------- TexPak
Baseline

Foam Cure Time (min)

Figure 3.12. Recorded compression forces with varying rigid polyurethane foam cure 
times for DetaSheet and TexPak explosives. The solid lines are the compression forces 

confined by variable cured foam, whereas the dashed lines are respective explosive’
unconfined average peak pressures.
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Figure 3.13. Recorded compression forces with varying rigid polyurethane foam cure 
times for C-4 and KineStik explosives. The solid lines are the compression forces 

confined by variable cured foam, whereas the dashed lines are respective explosive’
unconfined average peak pressures.

3.2. RESULTS OF VOLUME TESTING OF CONFINEMENT MATERIAL

The purpose of the third round of testing was to focus on quantifying the changes 

of a breaching charge’s blast effects because of increasing confinement material (Table 

3.6). The testing procedures followed the same as unconfined baseline testing from the first 

round of testing with a few modifications. The first change of procedure was that only one 

explosive was tested. C-4 was chosen due to it being the most used as a military explosive 

for breaching. The second procedure change was that the explosive weight was reduced 

from 5.80 ± 0.04 ounces to 3.53 ± 0.04 ounces. This alteration was due to the C-4 confined 

testing results maxing out the load cell sensor’s upper limitations. The procedure's last 

change was that the pressure sensors were spaced apart at ten feet and fifteen feet instead

10 15 20

Foam Cure Time (min)
25 305
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of both sensors at fifteen feet. This modification was to measure the blast wave pressures 

at different distances that a breaching team might experience from the blast location.

3.2.1. Plate Dents. The crater dent depths of the reduced C-4 explosive indicated a 

linear relationship between the foam radius and the witness plate's dent depth. The increase 

in the polyurethane confinement dimension increased Plate Dent depth (Figure 3.14). This 

same linear relationship existed when the foam radius and the dent diameter were 

compared. The increase of the confinement foam material surrounding the explosive 

detonation resulted in a rise in the crater diameter (Figure 3.15).

Table 3.6. Values of recorded data from ten trial detonations of 3.53 ± 0.04 oz of C-4 
with variable polyurethane foam radius dimensions.

Trial #

Foam
Radius

(in)
Probe I 

(psi)
Probe II 

(psi)
Duration

(ms)

Force
Sensor
(lbf)

Dent
Depth

(in)

Dent
Diameter

(in)
Average
Baseline 0 6.854 3.721 1.78 1,354 0.058 1.435

1 0.459 6.761 3.677 1.82 1,384 0.059 1.434

2 0.825 7.412 4.603 1.84 1,663 0.063 1.460

3 0.786 5.145 4.452 1.77 1,143 0.070 1.417

4 2.092 5.090 4.761 1.83 28,550 0.065 1.483

5 1.998 4.909 5.851 1.89 18,970 0.067 1.493

6 1.945 5.663 4.717 1.79 14,460 0.070 1.470

7 3.074 4.186 3.311 1.81 29,060 0.085 1.532

8 4.456 3.528 2.605 1.78 25,340 0.087 1.598

9 4.608 3.058 2.485 1.83 41,540 0.088 1.523

10 6.255 2.316 1.905 1.81 34,510 0.093 1.645
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Figure 3.14. The Plate Dent crater depths results from ten trial detonations of 3.53 ± 0.04 
oz. of C-4 with variable polyurethane foam radius dimensions. The dashed line indicates 
the average Plate Dent depth of three unconfined trials of the same weight C-4 charge.
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Figure 3.15. The Plate Dent crater diameter results from ten trial detonations of 3.53 ± 
0.04 oz. of C-4 with variable polyurethane foam radius dimensions. The dashed line 

indicates the average Plate Dent depth diameter of three unconfined trials of the same
weight C-4 charge.
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3.2.2. Pressures. The positive peak pressures of the volumetric testing performed 

were analyzed in the same manner as previously done in the baseline and foam cure time 

testing. The raw testing data collected by the MREL Data Trap was processed through the 

MREL software and converted from voltage to proper pressure units. The pressure data 

from the farthest pressure probe from the blasting site shows a decreasing exponential trend 

as the RPF confinement material volume was increased, and the positive peak pressure 

decreased (Figure 3.16).

7

6

1

y = 5.5101e-0157x 
R2 = 0.5282

0
0 1 2 3 4 5 6 7

Foam Radius (in)

Figure 3.16. Measured positive peak blast pressures at 15-feet away from 3.53 ± 0.04 oz. 
of C-4 detonated with variable confinement polyurethane foam radius. The dashed line 

indicates the average positive peak pressure of three unconfined trials of the same weight
C-4 charge.

A similar decreasing exponential trend was seen for the closer pressure 

transducer's data located only ten feet from the blasting site location. As the RPF blocks
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increased in size, the blast pressure experienced at that distance decreased (Figure 3.17). 

This testing compares the peak pressures with respect to the RPF confinement volume, 

whereas the previous confinement testing compared the peak pressures with respect to the 

RPF cure time. The foam cure time was seen to increase the shockwave’s peak pressures 

because the foam was hardening as the cure time increased. The increase of the foam 

confinement thickness decreased the pressures because the RPF was already hardened.
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Figure 3.17. Measured peak blast pressures at 10-feet away from 3.53 ± 0.04 oz. of C-4 
detonated with variable confinement polyurethane foam radius. The dashed line indicates 

the average positive peak pressure of three unconfined trials of the same weight C-4
charge.

The increase of a confinement material around an explosion would limit the escape 

of energy from the immediate blast site and direct the blast energy towards the weakest 

point of confinement. In the RPF volume testing case, the weakest point of confinement
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was downwards towards the load sensor versus outwards towards the pressure sensors. 

Thus, resulting in a reduction of peak pressures and increased compression force as the 

RPF confinement volume increased.
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Figure 3.18. Positive phase impulse changes for 3.53 ± 0.04 oz. of C-4 explosive as rigid 
polyurethane foam confinement, material dimensions were increased. The dashed line 
indicated unconfined baseline positive phase impulse for respective explosive types.

The positive phase impulse was seen to increase exponentially as the thickness of 

the RPF confinement material was increased (Figure 3.18). This impulse increase would 

indicate that the application of RPF would increase the amount of impulse force that a 

breaching team would encounter by using this technique of breaching compared to 

unconfined charge techniques. A larger precast RPF confinement block would result in a 

more significant amount of positive phase impulse a blast would expel into the surrounding

environment.
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3.2.3. Compression Forces. The compression forces recorded by the force load 

cell mounted directly below the blasting test location followed an increasing logarithmic 

trend (Figure 3.19) opposite of the decreasing exponential trend seen in the peak pressures. 

The data shows that the greater the RPF radius became around a breaching charge, the 

more compression force strength would be recorded. The data collected by the load-cell 

sensor provided numerical evidence that by doubling the confinement RPF radius, the 

compression force of the detonation will roughly increase by 150%.
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Figure 3.19. The compression forces (lbf) of 3.53 ± 0.04 oz. of C-4 detonated with 
variable confinement polyurethane foam radius. The dashed line indicates the average 

compression force of three unconfined trials of the same weight C-4 charge.
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4. DISCUSSION

The data collected from the baseline testing provided average positive peak 

pressures, compression force capabilities, and brisance abilities of the four tested breaching 

charge explosives in an unconfined placement. This initial, unconfined testing 

demonstrated the capabilities of breaching explosives as they are currently utilized as 

breaching charges by placing the charge on a surface and detonating the breaching charge. 

The confinement testing focused on analyzing the change in a charges’ explosive 

parameters concerning RPF cure time by illustrating that the longer the foam cured, the 

more damaging the charges would be. For all four of the explosive types tested, the blast 

effects followed a logarithmic trend. No significant change in duration of the first peak 

positive phase of the shockwave was noticed when comparing unconfined to RPF confined 

blasts. It should be noted that most of the data collected at 3.5 and 10 minutes of foam 

curing, the compression forces, and the shock wave pressures were seen to be less than the 

unconfined baseline test data. These results imply that for the polyurethane foam to be 

optimized as a breaching charge confinement material, the foam should be cured longer 

than 10 minutes to maximize the blast's damaging effects.

The final testing analyzed varying confinement radii of a fully cured RPF block 

that showed that the more confinement around the detonation, the greater the compression 

force and cratering depth. The positive peak pressure of a blast shockwave was seen to be 

reduced with a thicker confinement material surrounding the detonation of the breaching 

charges, opposite of the impulse. No significant increase in the duration of the first peak 

positive phase o f the shockwave was noticed as the volume o f the RPF confinement
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material was increased. These findings imply that more RPF cast around a charge would 

be necessary for an explosive to demonstrate maximum blasting damage potential. The 

testing also provided evidence that the greater the distance a breaching team is from a blast 

location, the decrease in blast pressures they would experience by measuring the same 

blasts' pressures at a variable distance.

The real-life practicality of confining a breaching charge to maximize the blast 

effects and minimize the required amount of confinement raises the need to determine an 

optimal RPF confinement amount. The collected data would indicate that a confinement 

radius of two inches or more would improve a breaching charge’s effects while not being 

so large as to be cumbersome to implement. At RPF radii beyond four inches, diminishing 

returns in the compression forces were seen compared to the RPF block's overall size. The 

curve in Figure 3.19 indicates that at two inches of RPF confinement, the compression 

forces were seen to have a tremendous increase from previously tested radii before the 

increasing logarithmic trend began to flatten out around four inches of confinement. The 

Plate Dent depth followed an increasing linear trend as the foam thickness increased. The 

shockwave pressures decreased linearly as the confinement material around the charge was 

increased. These two variables would indicate that the more foam around a breaching 

charge, the more influential the charge would be for breaching. Since the compression force 

data suggested an increasing logarithmic trend as the RPF material increased, this blast 

effect would be the limiting variable for improved breaching charge blasting.

This experiment's findings have provided data that explosive breaching charges 

have improved explosive properties when confined by polyurethane foam. When confined 

by the polyurethane foam, the average compression force was increased by 483%, and the
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average Plate Dent depths were increased by 26.4%. The average blast peak pressure of a 

polyurethane foam confined detonation was 10% less than an unconfined detonation. The 

blast will have increased compression force that would be beneficial for causing more 

damage to the breach's entry point and destroying stronger material breaches by smaller 

weighted explosive charges. The breaching charge's confinement also decreased peak 

pressure, which would benefit a breaching team in the blast's proximity. This confinement 

option may reduce possible traumatic brain injuries to the breaching teams due to decreased 

peak pressure. Finally, the increased polyurethane foam increased brisance abilities in all 

four explosive types when used as a confinement material.

Further testing into advanced breaching applications of this RPF confinement 

would need to occur to determine this newly proposed breaching technique's optimal usage. 

A spray-on RPF confinement system that encased an already primed and placed breaching 

charge would improve the charge’s blast effects and require curing time to be optimally 

effective. A pre-casted RPF block with an adequate confinement radius would be 

recommended. This application would maximize the RPF structural strength and prevent 

any time loss on target waiting for the RPF to cure. However, the RPF block's bulkiness 

and the placement technique of a confined breaching charge would need to be modified.
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5. CONCLUSIONS

The use of rigid polyurethane foam (RPF) material as a confinement material for a 

breaching charge proved helpful in increasing the explosive charge’s significant effects for 

a successful breach. All the explosive properties (shockwave positive peak pressure, 

compression force, and brisance crater ability) demonstrated an increase in desired energy 

output when confined by the RPF material compared to the unconfined test. The addition 

of a twelve-ounce spray RPF to the four types of breaching charges tested, and cured for 

3.5-minutes, resulted in an average of 21% decrease in shockwave pressure, 40% increase 

in compression force, and 10% increase in Plate Dent depth compared to an unconfined 

charge. An average of 33% increase in shockwave pressure, 524% compression force, and 

39% Plate Dent depth was seen when the RPF was cured to 30-minutes compared to a 3.5- 

minute cure time. The detonation parameters of a breaching charge were increased as the 

RPF cured longer before a detonation occurred.

An evaluation of varying thicknesses of fully cured RPF confinement indicated that 

an increase of the confinement material would increase desirable breaching effects. A 

210% increase of RPF thickness around a C-4 breaching charge compared to unconfined 

baseline data resulted in an average of 7% decrease in positive peak pressure, a 2010% 

increase in compression force, and a 12% increase in Plate Dent depths. The increase of 

RPF thickness around a C-4 breaching charge by 610% compared to unconfined baseline 

data resulted in an average of 60% decrease in positive peak pressure, a 2,450% increase 

in compression force, and a 60% increase in Plate Dent depths. The volume of the 

polyurethane foam material encasing the detonations showed that the larger the
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confinement radius of the fully cured polyurethane foam around the charge, the more 

effective and damaging the blast would be.

Overall, a breaching charge confined by rigid polyurethane foam (RPF) was more 

effective than an unconfined breaching charge. An RPF confined breaching charge was 

seen to have an increase in compression forces and brisance cratering capability compared 

to unconfined breaching charges. The RPF confined explosives produced a greater positive 

phase impulse but resulted in an overall decrease of peak positive blast pressures. The 

confinement of a charge with rigid polyurethane foam would be a more effective breaching 

technique that would result in more effective breaches and protect breaching teams better 

against traumatic brain injuries.
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6.1. FORM FACTOR AND OPTIMIZED APPLICATIONS

This study showed that a breaching charge’s compression force and material 

cratering ability were increased, while the hazardous blast pressures were decreased by 

confinement of rigid polyurethane foam (RPF). A future study on how RPF could be 

optimally applied to real-life scenarios would need to be accomplished to optimize this 

study’s findings. The results of this study show that a breaching charge’s explosive effects 

would be amplified by encasing a charge in RPF before detonation but was unable to 

provide specific form factors of the RPF confinement material. Further research would be 

needed into optimal size, shape, and other physical specifications of the RPF when applied 

to actual breaching surfaces, such as doors and windows, compared to the Plate Dent steel 

surface.

6.2. PRESSURE INCREASES AS FOAM CURE TIME INCREASES

A recommended study would be suggested that further analyzed the results of the 

foam cure time testing. The results from this testing indicated that the longer the RPF cured, 

the greater the positive peak pressure would be. This finding would mean that as the foam 

reaction progresses towards completion, something is causing the blast pressures to build 

up before leaving the blast site. A future study that utilized high-speed photography and 

properly placed pressure transducers would help determine the physical traits resulting 

from the collected data found in this study about vary RPF cure times. Further analysis of 

the RPF confinement material on the pressure wave would include varying the pressure

6. FUTURE WORK
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transducer locations to simulate different breaching team locations. The testing would 

include simulating head-on breaches versus side-stack breaches as well as different 

distances from the blast site. The future study would also be recommended to compare this 

study, that simulated internal breaching scenarios, to external breaching to determine any 

varying results. These recommend tests would help determine the safest location of the 

breaching team utilizing this newly proposed breaching technique.

6.3. OTHER TYPES OF CONFINING MATERIALS

A future study into other confining material options would be incredibly beneficial 

for the explosive engineering community to understand how different confinement 

mediums alter a detonation’s abilities. Understanding how confinement material affects a 

blast wave’s physical properties would result in more efficient blasting techniques and 

allow for alternative confinement options in various blasting situations. This work could 

include a study into such confinement mediums as liquid water versus ice confinement or 

gelatin versus epoxy resin materials. While future studies of confinement materials would 

determine the effects of certain confinement materials on a blast wave, a proper 

understanding would be needed to apply the correct confinement material for the right 

blasting scenario. For example, a polyurethane spray foam may not be beneficial in a large 

borehole mining blast but may prove useful as a confinement material in a small 

underground overhead shot.

A focused study on a polystyrene foam confinement option for breaching charges 

would build on the work done in this experiment. This foam style would allow a breaching 

team to eliminate the variable cure time and application of a spray foam by having a
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preassembled charge encased by a rigid foam piece. The polystyrene charge would then be 

rapidly set into place and detonated almost immediately compared to a polyurethane foam 

charge that would require charge placement and foam application, and optimal cure time.

6.4. FURTHERING THE PLATE DENT TESTING

Future studies based on this experiment would incorporate more scientific 

instrumentation to the classic Plate Dent procedures. While this study focused on designing 

an experiment that incorporated instrumentation into the Plate Dent procedure to conserve 

the number of trials, future research would be suggested to compare compression force 

values to crater dimensions. Another improvement recommended furthering the Plate Dent 

capabilities and accuracy would be to utilize 3-D computer modeling software to measure 

the witness plate craters' volumes. This modeling possibility would allow for further 

understandings of the effects of the blasts occurring on the steel plates.
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The collected output data from baseline experimental testing was provided in this 

appendix for all trials performed. This data was collected by two pressure tranducers and a 

load-cell force sensor. All sensor signals were sent through a signal conditioner before 

being collect and stored in an MREL data accusation system. This stored data was analyzed 

and interpreted using MREL compatible software. The baseline testing consisted of 

unconfined charges detonated in an open-air environment. The data was presented in 

alphabetical order of explosive type tested. The order of data was further sorted in the 

corresponding trial number and recorded data channel number.

Figure A.1. C-4 baseline trial 1 channel 1 (psi).
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Figure A.2. C-4 baseline trial 1 channel 2 (lbf).

Figure A.3. C-4 baseline trial 1 channel 3 (psi).
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Figure A.4. C-4 baseline trial 2 channel 1 (psi).

Figure A.5. C-4 Baseline Trial 2 Channel 2 (lbf).
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Figure A.6. C-4 baseline trial 2 channel 3 (psi).

Figure A.7. C-4 baseline trial 3 channel 1 (psi).
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Figure A.8. C-4 baseline trial 3 channel 2 (lbf).

Figure A.9. C-4 baseline trial 3 channel 3 (psi).
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Figure A.10. DetaSheet baseline trial 1 channel 1 (psi).

Figure A.11. DetaSheet baseline trial 1 channel 2 (lbf).
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Figure A.12. DetaSheet baseline trial 1 channel 3 (psi).

Figure A.13. DetaSheet baseline trial 2 channel 1 (psi).
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Figure A.14. DetaSheet baseline trial 2 channel 2 (lbf).

Figure A.15. DetaSheet baseline trial 2 channel 3 (psi).



www.manaraa.com

87

Figure A.16. DetaSheet baseline trial 3 channel 1 (psi).

Figure A.17. DetaSheet baseline trial 3 channel 2 (lbf).
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Figure A.18. DetaSheet baseline trial 3 channel 3 (psi).

Figure A.19. KineStik baseline trial 1 channel 1 (psi).
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Figure A.20. KineStik baseline trial 1 channel 2 (lbf).

Figure A.21. KineStik baseline trial 1 channel 3 (psi).
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Figure A.22. KineStik baseline trial 2 channel 1 (psi).

Figure A.23. KineStik baseline trial 2 channel 2 (lbf).
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Figure A.24. KineStik baseline trial 2 channel 3 (psi).

Figure A.25. KineStik baseline trial 3 channel 1 (psi).
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Figure A.26. KineStik baseline trial 3 channel 2 (lbf).

Figure A.27. KineStik baseline trial 3 channel 3 (psi).
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Figure A.28. TexPak baseline trial 1 channel 1 (psi).

Figure A.29. TexPak baseline trial 1 channel 2 (lbf).
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Figure A.30. TexPak baseline trial 1 channel 3 (psi).

Figure A.31. TexPak baseline trial 2 channel 1 (psi).
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Figure A.32. TexPak baseline trial 2 channel 2 (lbf).

Figure A.33. TexPak baseline trial 2 channel 3 (psi).
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Figure A.34. TexPak baseline trial 3 channel 1 (psi).

Figure A.35. TexPak baseline trial 3 channel 2 (lbf).
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Figure A.36. TexPak baseline trial 3 channel 3 (psi).
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The collected output data from rigid polyurethane foam variable cure-time 

experimental testing was provided in this appendix for all trials performed. This data was 

collected by two pressure tranducers and a load-cell force sensor. All sensor signals were 

sent through a signal conditioner before being collect and stored in an MREL data 

accusation system. This stored data was analyzed and interpreted using MREL compatible 

software. The variable cure time testing consisted of charges detonated under the 

confinement of rigid polyurethane foam cured for variable time limits of 3.5-, 10-, 20-, 30- 

minutes. The data was presented in alphabetical order of explosive type tested. The order 

o f  data was further sorted in the corresponding trial number and recorded data channel 

number.

Figure B.1. C-4 3.5-minute foam cure time channel 1 (psi).
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Figure B.2. C-4 3.5-minute foam cure time channel 2 (lbf).
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Figure B.3. C-4 3.5-minute foam cure time channel 3 (psi).
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Figure B.4. C-4 10-minute foam cure time channel 1 (psi).

Figure B.5. C-4 10-minute foam cure time channel 2 (lbf).
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Figure B.6. C-4 10-minute foam cure time channel 3 (psi).

Figure B.7. C-4 20-minute foam cure time channel 1 (psi).
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Figure B.8. C-4 20-minute foam cure time channel 2 (lbf). The plot was improperly titled
“ 10-minute” from MREL software.

Figure B.9. C-4 20-minute foam cure time channel 3 (psi). The plot was improperly 
titled “ 10-minute” from MREL software.
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Figure B.10. C-4 30-minute foam cure time channel 1 (psi).

Figure B.11. C-4 30-minute foam cure time channel 2 (lbf).
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Figure B.12. C-4 30-minute foam cure time channel 3 (psi).

Figure B.13. DetaSheet 3.5-minute foam cure time channel 1 (psi).
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Figure B.14. DetaSheet 3.5-minute foam cure time channel 2 (lbf).

Figure B.15. DetaSheet 3.5-minute foam cure time channel 3 (psi).
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Figure B.16. DetaSheet 10-minute foam cure time channel 1 (psi).

Figure B.17. DetaSheet 10-minute foam cure time channel 2 (lbf).
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Figure B.18. DetaSheet 10-minute foam cure time channel 3 (psi).

Figure B.19. DetaSheet 20-minute foam cure time channel 1 (psi).
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Figure B.20. DetaSheet 20-minute foam cure time channel 2 (lbf).
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Figure B.21. DetaSheet 20-minute foam cure time channel 3 (psi).
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Figure B.22. DetaSheet 30-minute foam cure time channel 1 (psi).

Figure B.23. DetaSheet 30-minute foam cure time channel 2 (lbf).
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Figure B.24. DetaSheet 30-minute foam cure time channel 3 (psi).

Figure B.25. KineStik 3.5-minute foam cure time channel 1 (psi).
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Figure B.26. KineStik 3.5-minute foam cure time channel 2 (lbf).

Figure B.27. KineStik 3.5-minute foam cure time channel 3 (psi).
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Figure B28. KineStik 10-minute foam cure time channel 1 (psi).

Figure B.29. KineStik 10-minute foam cure time channel 3 (psi).
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Figure B.30. KineStik 20-minute foam cure time Channel 1 (psi).

Figure B.31. KineStik 20-minute foam cure time channel 2 (lbf).
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Figure B.32. KineStik 20-minute foam cure time channel 3 (psi).
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Figure B.33. KineStik 30-minute foam cure time channel 1 (psi).
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Figure B.34. KineStik 30-minute foam cure time channel 2 (lbf).

Figure B.35. KineStik 30-minute foam cure time channel 3 (psi).
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Figure B.36. TexPak 3.5-minute foam cure time channel 1 (psi).

Figure B.37. TexPak 3.5-minute foam cure time channel 2 (lbf).



www.manaraa.com

118

TexPak 3.5 min Ch3
5 -

4

3

Time (ms)

Figure B.38. TexPak 3.5-minute foam cure time channel 3 (psi).

Figure B.39. TexPak 10-minute foam cure time channel 1 (psi).
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Figure B.40. TexPak 10-minute foam cure time channel 2 (lbf).

Figure B.41. TexPak 10-minute foam cure time channel 3 (psi).
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Figure B.42. TexPak 20-minute foam cure time channel 1 (psi).

Figure B.43. TexPak 20-minute foam cure time channel 2 (lbf).
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Figure B.44. TexPak 20-minute foam cure time channel 3 (psi).

Figure B.45. TexPak 30-minute foam cure time channel 1 (psi).
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Figure B.46. TexPak 30-minute foam cure time channel 2 (lbf).

Figure B.47. TexPak 30-minute foam cure time channel 3 (psi).
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The collected output data from rigid polyurethane foam variable dimension 

experimental testing was provided in this appendix for all trials performed. This data was 

collected by two pressure tranducers and a load-cell force sensor. All sensor signals were 

sent through a signal conditioner before being collect and stored in an MREL data 

accusation system. This stored data was analyzed and interpreted using MREL compatible 

software. The variable dimension testing consisted of charges detonated under the 

confinement of fully cured rigid polyurethane foam with various radius dimensions. The 

data was presented in alphabetical order of explosive type tested. The order of data was 

further sorted in the corresponding trial number and recorded data channel number.

Figure C.1. Foam volume testing trial 1, channel 1 (psi).
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Figure C.2. Foam volume testing trial 1, channel 2 (lbf).

Figure C.3. Foam volume testing trial 1, channel 3 (psi).
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Figure C.4. Foam volume testing trial 3, channel 1 (psi).

Figure C.5. Foam volume testing trial 3, channel 2 (lbf).
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Figure C.6. Foam volume testing trial 3, channel 3 (psi).

Figure C.7. Foam volume testing trial 4, channel 1 (psi).
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Figure C.8. Foam volume testing trial 4, channel 2 (lbf).

Figure C.9. Foam volume testing trial 4, channel 3 (psi).
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Figure C.10. Foam volume testing trial 5, channel 1 (psi).

Figure C.11. Foam volume testing trial 5, channel 2 (lbf).
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Figure C.12. Foam volume testing trial 5, channel 3 (psi).

Figure C.13. Foam volume testing trial 6, channel 1 (psi).
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Figure C.14. Foam volume testing trial 6, channel 2 (lbf).

Figure C.15. Foam volume testing trial 6, channel 3 (psi).
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Figure C.16. Foam volume testing trial 7, channel 1 (psi).

Figure C.17. Foam volume testing trial 7, channel 2 (lbf).
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Figure C.18. Foam volume testing trial 7, channel 3 (psi).

Figure C.19. Foam volume testing trial 8, channel 1 (psi).



www.manaraa.com

134

Figure A.20. Foam volume testing trial 8, channel 2 (lbf).

Figure C.21. Foam volume testing trial 8, channel 3 (psi).
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Figure C.22. Foam volume testing trial 9, channel 1 (psi).

Figure C.23. Foam volume testing trial 9, channel 2 (lbf).
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Figure C.24. Foam volume testing trial 9, channel 3 (psi).

Figure C.25. Foam volume testing trial 10, channel 1 (psi).
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Figure C.26. Foam volume testing trial 10, channel 2 (lbf).

Figure C.27. Foam volume testing trial 10, channel 3 (psi).
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This appendix contains all other pertinent experimental data, figures, and sensor 

calibration documentation. This data was collected by two pressure tranducers and a load­

cell force sensor. All sensor signals were sent through a signal conditioner before being 

collect and stored in an MREL data accusation system. This stored data was analyzed and 

interpreted using MREL compatible software and then further analyzed using graphing 

software. The data were presented in order of performed testing and by alphabetical order 

of tested explosive type. The sensor documentation was compiled by PCB Pizeotronics.

3.9

3.85

3.8

3.75

Q .
<DQ
4-*£
<DQ

3.7

3.65

3.6

3.55

3.5

3.45
10 15 20

Foam Cure Time (min)
25 30 350 5

Figure D.1. C-4 Plate Dent depth on witness plate with varying cure times of rigid
polyurethane foam confinement.
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Figure D.2. DetaSheet witness Plate Dent depth versus the polyurethane-foam
confinement foam cure times.
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Figure D.3. TexPak witness plate dent depth versus polyurethane-confinement foam cure
times.
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Figure D.4. C-4 averaged recorded positive peak pressure compared to the polyurethane-
confinement foam cure time.
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Figure D.5. DetaSheet recorded average positive peak pressure versus polyurethane-foam
confinement cure time.
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Figure D.7. TexPak positive peak pressure recorded in comparison to variable
polyurethane foam cure time.
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Figure D.8. C-4 compression force on load cell sensor as polyurethane-confinement foam
cure time increased.
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Figure D.9. The compression force of DetaSheet detonation with respect to the
polyurethane foam cure time.
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Figure D.10. Compression forces of KineStik explosive detonation with varying foam 
cure times of the polyurethane foam confining material.
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Figure D.12. Calibration sheet for pressure sensor probe S/N 14166.
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Figure D.13. Calibration sheet for pressure sensor probe S/N 14165.
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